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The dynamics of two-dimensional cellular networks is written in terms of coupled population equations,
which describe how the population of s-sided cells is affected by cell division and disappearance. In these
equations the effect of the rest of the foam on the disappearing or dividing cell is treated as a local mean field.
Under not too restrictive conditions, the equilibrium distribution P�s� of cells satisfies a linear difference
equation of order two or higher. The population equations are asymptotically integrable. The asymptotic
integrability implies a “universal” distribution P�s��Cs−�zs for large values of s, which is also the Boltzmann
distribution associated with the maximum entropy inference. Asymptotic integrability of the population equa-
tions is absent in a global mean-field approximation. The importance of short-range topological information to
control the evolution of foams is thus confirmed.
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I. INTRODUCTION

Two-dimensional �2D� random cellular networks �2D
foams� form the basic frame of many natural or engineered
materials �1–4�. Soap froths �5�, cork �6�, magnetic bubbles
in garnets �7�, Benard-Marangoni convection patterns �8�,
nanostructured cellular networks �9�, and biological epider-
mis �10–14� are a few examples. 2D foams are random par-
titions of the plane by cells, which are topological polygons.
Disorder or absence of specific adjustment imposes minimal
incidence numbers �three edges incident on a vertex�. Foams
evolve into a stationary state of statistical equilibrium, with
an invariant distribution of cell shapes P�s�, where s, the
number of sides of a cell, is the only topological random
variable �1,15�. Statistical equilibrium is established through
local, elementary topological transformations �ETTs�, which
can be an edge flip �T1 transformation� or the disappearance
of a three-sided cell �T2 transformation�.

Biological epithelia �skin of a cucumber and human epi-
dermis� provide excellent examples of cellular structures
where all the topological action is two-dimensional �10–13�.
The epidermis of mammals can be regarded as a fluid of
cells, filling the space between the dermis and the outer sur-
face at random. Cells transit vertically upward through the
Malpighi layer from the one-cell-deep basal layer, where
they are born, to the corneum layer, where they die. The
constant supply of cells needed for the renewal of the tissue
is provided by division and detachment of basal cells. Each
basal cell is attached to the basal membrane, through a po-
lygonal facet. The imprints of basal cells fill the two-
dimensional basal layer completely and, at first sight, ran-
domly �Fig. 1�. It constitutes a two-dimensional foam
�16–18�. When a cell becomes detached from the basal mem-
brane, its polygonal imprint disappears from the two-
dimensional foam. The steady state of the basal layer �and,
hence, the renewal of epidermis� has been studied through
two-dimensional foams evolving by cell division and disap-

pearance �16–19�. Cell division or its inverse, cell disappear-
ance �coalescence of two cells by removal of their interface�,
are specific combinations of transformations T1 and T2.

Computer simulations of �biological� foams indicate that
the asymptotic behavior of the probability distribution P�s�
for large values of s, is universal in the sense that it is inde-
pendent of the type of foam, of the elementary topological
transformations �which disorder the structure and maintain it
in a steady, but disordered state�, and of the initial structure.
After transients have died off, foams have a distribution P�s�
that decays exponentially with s for large s. For example, for
a froth generated by applying cell coalescence and division,
P�s�=0.37 exp�−0.9�s−6�� for s�6, as Figs. 2 and 3 show
�20�. The rare exception �21� supports the exponential rule.

One expects s-sided cells with s�10 to be rare. Thus,
experiments do not provide an accurate distribution P�s� for
large s. On the other hand, simulations �numerical experi-
ments� can produce numerous foams and good statistics of

FIG. 1. Horizontal cut of the basal layer of a stained sample of
human epidermis, viewed with an optical microscope �from �17�
with permission�. The polygonal shape of the attachment of basal
cells appears clearly in the focal plane. The frequencies of s-sided
cells are P�4�=0.012, P�5�=0.208, P�6�=0.566, P�7�=0.194, and
P�8�=0.020 �17�.
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s-sided cells and, more importantly, reveal the universal
asymptotic behavior of P�s�. This power of simulations in
statistical physics has been demonstrated before, e.g., the
early simulations of Alder and Wainwright revealed an unex-
pected algebraic long-time tail in the velocity autocorrelation
function of hard disks in two dimensions �22�.

Here we aim to get some insight into the universality in
2D cellular structures. We study the stationary distribution
P�s� as the solution of coupled population equations, which
account for the local, but correlated variations in the popu-
lation of cells under ETT �16–19,21�. In a previous paper on
foams evolving by cell disappearance �23�, we have already
shown that in a local mean-field approximation, which ac-
counts for the nearest-neighbor correlations in statistical
equilibrium, the population equations are asymptotically in-
tegrable. This means that the population equations, linear
difference equations for P�s� with polynomial coefficients,
have their order reduced at large s. Here, we show
asymptotic integrability of population equations describing

foams �biological epithelia� evolving by cell division and
disappearance. The asymptotic integrability �and, hence, the
short-range topological information� implies that

P�s� � Cs−�zs �1�

for large values of s. This asymptotic behavior is universal,
although real numbers C, �, and z are model dependent. We
present examples where the dominant asymptotic behavior of
P�s� is exponential �z�1�. In addition, we present several
examples with power-law variation of P�s� at large s �z=1�.
Notably, Delannay and Le Caër �21� have obtained, in a spe-
cial case of fragmentation �cell division, but unrestricted�, a
distribution that decays algebraically as P�s��s−5.72 for s
�45.

Our paper is organized as follows. In Sec. II, we introduce
the coupled population equations in the local mean-field ap-
proximation. In Sec. III, we show that for a wide class of
models, integrodifference population equations can be trans-
formed into linear difference equations. These linear differ-
ence equations are asymptotically integrable, as discussed in
Sec. IV. Several classes of examples are analyzed in Secs.
V–VII, to confirm the universality in 2D foams. A summary
of our results and discussions are given in Sec. VIII. Con-
clusions are in Sec. IX.

II. COUPLED POPULATION EQUATIONS IN THE LOCAL
MEAN-FIELD APPROXIMATION

The set of all possible arrangements of the topological
polygons is explored through local topological transforma-
tions of the cellular structure: division �m, for mitosis� and
disappearance �d� of cells. Topological transformations
change the number of sides of the cells involved.

The numbers of sides of the cells directly involved in the
division are related by

m + 4 = d1 + d2, �2�

where m and di denote the numbers of sides of the mother
and daughter cells, respectively. There are two other cells
involved in the mitotic process, at both ends of the dividing
membrane. They gain one side each �Fig. 4�.

We denote by ��s �k ,m� the conditional probability that a
k-sided dividing cell has an s-sided daughter �3�s�k+1�.
Here m stands for mitosis. Since cell division obeys the to-
pological rule �2�, the kernel is symmetric

��s�k,m� = ��k + 4 − s�k,m� �3�

and follows two sum rules

�
s

��s�k,m� = 2,

�
s

s��s�k,m� =
1

2�
s

�s + �k + 4 − s����s�k,m� = k + 4. �4�

The first sum rule states that a cell divides into two. The
second is automatic; it follows from the first and from the
symmetry of the kernel �16�.

FIG. 2. Distribution of the number of edges per cell in the froths
generated by T1 and T2 transformations �T1-T2�, cell-division and
coalescence transformations �CD�, and T1 transformations �data
from �20� with permission�. For s�18, the points are indistinguish-
able in this plot �but see Fig. 3�.

FIG. 3. log�P�s�� vs s for the foams mentioned in Fig. 2. In all
three cases, the dominant asymptotic behavior of P�s� is
exponential.
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Apart from cell division, there is another topological pro-
cess that allows the tissue to reach statistical equilibrium:
disappearance of cells. The disappearance of a k-sided cell
leaves a characteristic trace on its neighbors. This topologi-
cal scar is obtained by assuming that the k-sided cell disap-
pears through a cascade of successive flips �T1� of its sides,
starting usually, but not necessarily, with the smallest one
and ending with the disappearance �T2� of the final triangular
cell �Fig. 4�.

If a three-sided cell disappears, its three neighbors lose
one side each �T2 transformation�. If a four-sided cell disap-
pears, its four neighbors lose a total of 6−4=2 sides. In
general, when a k-sided cell disappears, its k neighbors lose
6−k sides in total, and a maximum of one side each �17�.
The loss of one side is definitive. The gain of one side
�through T1� may be temporary. However, at least two, non-
edge-sharing neighbors must lose one side each �through the
first flip and the final T2�. When a three-, four-, or five-sided
cell disappears, it leaves a unique topological scar on its
neighbors: �−1,−1,−1�, �−1,0 ,−1 ,0�, and �−1,0 ,0 ,−1 ,1�,
respectively. A disappearing six-sided cell has three topologi-

cally distinct ways of injecting zero sides into its neighbors,
etc. �Fig. 4�. In epithelia in statistical equilibrium, only
three-, four- and five-sided cells can disappear �17�. The
same conclusion follows from von Neumann’s law in 2D
soap froths: only three-, four-, and five-sided cells lose gas to
their neighbors, on average �1�. Incidentally, the loss of one
cell and a total of six sides �k from the disappearing cell and
6−k from its neighbors� satisfies Euler’s relation for polyhe-
dra.

The conditional probability 	�i �k ,d� that a k-sided disap-
pearing cell gives i sides �−1� i�k−4� to one of its neigh-
bors, follows two sum rules:

�
i=−1

k−4

	�i�k,d� = 1,

�
i=−1

k−4

i	�i�k,d� = 1 −
6

k
. �5�

The first sum rule is normalization. The second sum rules
states that a disappearing k-sided cell, gives k−6 sides to its
neighbors.

The relations for 	 are obtained �17� by assuming that the
k-sided cell disappears through a cascade of successive flips
�T1� of its sides and ending with the disappearance �T2� of
the final triangular cell �Fig. 4�. For k=3, 	�−1 �3,d�=1.
The first flip has the following consequences: The original
k-sided cell has now k−1 sides. One of its neighbors has
forever lost a side. Two neighbors have temporarily gained a
side. For k�4, this yields the recursion relations in k and i

k	�i�k,d� = �k − 3�	�i�k − 1,d� + 2	�i − 1�k − 1,d� + 
i,−1,

�6a�

where 	�i �k ,d�=0 outside the range −1� i�k−4. Indeed,
after the first flip, the cell has k−1 sides. Which one of the k
neighbors of the original disappearing cell is to gain the i
sides? The two neighbors of the first flipped edge, having
already gained one side, need only gain a further i−1 sides
�second term on the right of Eq. �6a��. The other k−3 neigh-
bors must gain the full i sides �first term�. The neighbor at
the end of the first flipped side has definitively lost one side
and enters the recursion relation for i=−1, with probability 1
�third term�. For i=−1, one obtains �by writing 	�−1 �k ,d� as
a constant plus a term dependent on k� an explicit expression
�17�

	�− 1�k,d� =
1

3
+

4�k − 3�!
k!

. �6b�

We assume that there is no correlation between successive
topological events: When a cell divides or disappears, its
neighbors are not topologically active. The evolution of P�s�
is therefore a Markov process.

The change dN�s� in the number N�s� of s-sided cells per
�arbitrary� time interval dt is given by �16�

FIG. 4. �a� Cellular division. Note that during the process, one
m-sided cell is lost, two cells are gained, and two neighbors gain
one side. �b� Topological scars left after the disappearance of a
four-, five-, and six-sided cell.
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dN�s�
dt

= �
k

N�k�P�m�k��− 
ks + ��s�k,m� +
2

k
Ms−1�k�

−
2

k
Ms�k�	 + �

k

N�k�P�d�k�

��− 
ks + �
i=−1

i=k−4

Ms−i�k�	�i�k,d� − Ms�k�	 , �7�

where P�m �k� �P�d �k�� is the conditional probability that an
existing k-cell divides �disappears� weighted by the rate of
division �disappearance� and Ms�k� is the average number of
s-cell neighbors of a k cell. In Eq. �7�, the first bracket deals
with cell division, the second with cell disappearance. The
probability of finding a cell with s sides is P�s�=N�s� /N,
where N�s� is the number of s-sided cells and N=�sN�s� is
the total number of cells. Then,

dP�s�
dt

=
1

N

dN�s�

dt
− P�s�

dN

dt
� �8�

and

1

N

dN

dt
= �

k

P�k��P�m�k� − P�d�k�� . �9�

N is constant if cells divide �m� at the same rate as they
disappear �d� �i.e., detach from the basal layer of the epider-
mis�.

We look for a population of cells in statistical equilibrium.
P�s� is thus stationary, dP�s� /dt=0, and obeys the coupled
population equations

�
k

P�k�P�m�k��− 
ks + ��s�k,m� +
2

k
Ms−1�k� −

2

k
Ms�k�

− P�s�	 + �
k

P�k�P�d�k��− 
ks − Ms�k��1 − 	�0�k,d��

+ �
i=1

i=k−4

Ms−i�k�	�i�k,d� + Ms+1�k�	�− 1�k,d� + P�s�	 = 0.

�10�

When a cell divides, the population of s-sided cells is af-
fected if: �i� a s-sided cell divides; �ii� a dividing k cell has a
s-sided daughter, for any k; �iii� the affected neighbor had
�s−1� sides before division; or �iv� a neighboring s-sided cell
is affected by the division. The four terms in the first bracket
of �10� corresponds to these four topological mechanisms.
The fifth term expresses the production of one extra cell
during mitosis �9�.

When a cell disappears, the population of s-sided cells is
affected if: �i� a s-sided cell disappears; �ii� a s-sided neigh-
bor gains or loses sides; �iii� a disappearing k cell gives i
sides to a �s− i�-sided neighbor; or �iv� a disappearing k cell
takes one side from a �s+1�-sided neighbor. The terms in
second bracket of �10� correspond to these four topological
mechanisms. The fifth term accounts for the disappearance
of one cell �9�.

A geometrical solution must satisfy the constraints

�
s

P�s� = 1, �11�

�
s

sP�s� = 6, �12�

�
s

Ms�k� = �
s

A�k,s�P�s� = k . �13�

The first constraint normalizes the distribution P�s�. The sec-
ond states that �s the mean number of sides of a cell is six.
This comes from Euler’s relation on the polygonal foam and
minimal incidence numbers �1�.

The third constraint states that a k-sided cell has k neigh-
bors. Ms�k�, the average number of s-cell neighbors of a k
cell, can be expressed as Ms�k�=A�k ,s�P�s�. Since
N�s�A�k ,s�N�k� is the total number of pairs of neighboring s
and k cells, the correlator A�k ,s� can be regarded as the
conditional probability that an existing s cell neighbors a k
cell. By symmetry A�s ,k�=A�k ,s�. Furthermore, one can ob-
tain the most probable correlator A�k ,s� by maximum en-
tropy inference �making the third constraint redundant with
the other two and thereby increasing the entropy�. It is linear
in k and s �24�

A�s,k� = ��s − 6��k − 6� + s + k − 6. �14�

The parameter ��1/6 is usually �0 �15,25�. Thus, Eqs.
�10� and �13� represent a local mean-field treatment of the
cell population. Equation �14� gives the most probable form
of the nearest-neighbor correlator.

III. TRANSFORMATION OF THE INTEGRODIFFERENCE
POPULATION EQUATION TO A LINEAR

DIFFERENCE EQUATION

The constrained system �10� is a complicated system of
equations, in general. Numerical solutions of Eq. �10� or
computer simulations of foams evolving by division or dis-
appearance are reported in �16–21�.

The population equations �10� are, or can be transformed
into, a set of linear difference equations, in three cases: �i�
cell disappearance only �P�m �k�=0�, restricted to three-,
four-, and five-sided cells �P�d �k�=0 for k�6�; �ii� only cell
division takes place �P�d �k�=0� with either a uniform divi-
sion kernel ��s �k ,m�, which is independent of the number of
sides s of the daughter cell, or when the kernel is sum of 

functions 
�s−u�+
�s−k+u−4�, where u is an integer �see
Eq. �15a� below�; and �iii� cell division with a uniform kernel
and disappearance of three-, four-, and five-sided cells. Since
only cells with five sides or less can disappear, one side, at
most, can be given to a neighbor and the sum in the second
bracket of �10� reduces to one term i=1.

We consider the following division kernels �satisfying the
sum rules given by Eq. �4�� for the conditional probability
that a k-sided dividing cell has a s-sided daughter:
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�t
A�s�k,m� = �

u=3

u=t

bu�
�s − u� + 
�s − k + u − 4�� �15a�

describes nonuniform division of a k-sided cell into a u-sided
�3�u� t� and a �k−u+4�-sided daughter with probability
bu. The constraint �u=3

u=t bu=1 normalizes the distribution bu;

�smin

B �s�k,m� =
2

k − �2smin − 5�
, �15b�

for smin�s�k+4−smin. smin is the minimum number of sides
of the daughter cell. This kernel is uniform, i.e., independent
of the number of sides of the daughter cells. For smin=3, this
kernel is used in �21�. And,

�smin

C �s�k,m� =�
2

k − �2smin − 4�
for smin + 1 � s � k + 3 − smin

1

k − �2smin − 4�
for s = smin, k + 4 − smin

� �15c�

describes nearly uniform division. It is independent of the
number of sides of the daughter cells, except at the ends of
the range, s=smin and s=k+4−smin, penalized by a weight
1 /2 �16�.

In the case of uniform kernel, the daughter cell has s
sides, with smin�s�k+4−smin. Thus, the mother cell has k
sides, with k�2smin−4, which implies that P�m �k�=0 for
k�2smin−4 �k�3 for smin=3�. For cell disappearance, we
have P�d �k�=0 for k�6, which can be regarded as a corol-
lary of von Neumann’s law. Therefore, if smin�5, the fate of
a cell �division or disappearance—its differentiation and de-
tachment from the basal layer of the epidermis �17�� is en-
tirely determined by the number of its sides, that is, by its
geometrical neighborhood: A cell divides if it has six sides or
more. It disappears if it has five sides or less. This is, indeed,
what happens in biological epithelia, as suggested analyti-
cally �17� and in simulations �19,26�. In the simplest model
for the evolution and stability of biological tissues �26�, only
six-sided cells may rest instead of dividing.

By contrast, for smin=4, five-sided cells may divide or
disappear. For smin=3, the fate of three-, four-, and five-sided
cells is ambiguous. Moreover, one daughter may have more
�k+1� sides than its mother, which goes against the geo-
metrical purpose of cell division, which is size reduction of
the cell. The same discussion holds for the nearly uniform
kernel, but with P�m �k�=0 for k�2smin−2.

Let us introduce the following notations:

�s� = �
k

P�k�P�m�k���s�k,m� ,

a1��s� = − �
k

P�k�
2

k
P�m�k�A�s,k� − �

k

P�k�P�m�k� − P�m�s� ,

a0��s� = �
k

P�k�
2

k
P�m�k�A�s,k� ,

a2�s� = �
k

P�k�P�d�k�A�s,k�	�− 1�k,d� ,

a1�s� = − �
k

P�k�P�d�k�A�s,k��1 − 	�0�k,d��

+ �
k

P�k�P�d�k� − P�d�s� ,

a0�s� = �
k

P�k�P�d�k�A�s,k�	�1�k,d� . �16�

Then, the population equation �10� can be written as

��s + 1� + a1��s + 1�P�s + 1� + a0��s�P�s��

+ �a2�s + 2�P�s + 2� + a1�s + 1�P�s + 1� + a0�s�P�s�� = 0.

�17�

In Eq. �17�, the first bracket deals with cell division and the
second with cell disappearance. Apart from the first term
�s+1�, �17� is already a difference equation.

For the kernel �t
A,

�s� = �
u=3

u=t

buP�m�s − 4 + u�P�s − 4 + u� ,

for s� t+1, i.e., in the asymptotic limit. �There are source
terms proportional to 
�s−u� for u� t�. The population equa-
tion for this kernel is the linear difference equation

�
u=6

u=t

�buP�m�s − 3 + u��P�s − 3 + u� + �a2�s + 2� + b5

�P�m�s + 2��P�s + 2� + �a1�s + 1� + a1��s + 1�

+ b4P�m�s + 1��P�s + 1� + �a0�s� + a0��s� + b3P�m�s��P�s�

= 0, �18�

for s� t+1.
For uniform and nearly uniform kernels, the population

equation �10� is an integrodifference equation but can be
transformed to a linear difference equation. Let us define the
difference operator D by

Df�s� = f�s� − f�s − 1� . �19�

For the uniform kernel,

D�s� = 
− 2P�m�s − 5 + smin�
s − smin

�P�s − 5 + smin�

and the population equation �17� can be transformed into a
linear difference equation by applying operator D

asmin−3� �s + smin − 3�P�s + smin − 3� + a3��s + 3�P�s + 3�

+ a2��s + 2�P�s + 2� + a1��s + 1�P�s + 1� + a0��s�P�s� = 0,

�20�

where

asmin−3� �s� = − 2P�m�s���smin − 6� ,
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a3��s� = a2�s��s − smin − 1� − 2P�m�s�
smin,6,

a2��s� = �a1��s� + a1�s� − a2�s���s − smin� − 2P�m�s�
smin,5,

a1��s� = �− a1��s� + a0��s� − a1�s� + a0�s���s − smin + 1�

− 2P�m�s�
smin,4,

a0��s� = �− a0��s� − a0�s���s − smin + 2� − 2P�m�s�
smin,3,

�21�

and ��s� is the step function: ��s�=1 if s�0 and ��s�=0 if
s�0.

For the nearly uniform kernel, the same method is used to
transform the integrodifference equation into a linear differ-
ence equation

asmin−2� �s + smin − 2�P�s + smin − 2� + asmin−3� �s + smin − 3�P�s

+ smin − 3� + a3��s + 3�P�s + 3� + a2��s + 2�P�s + 2�

+ a1��s + 1�P�s + 1� + a0��s�P�s� = 0, �22�

for s�smin+2, where

asmin−2� �s� = − �s − 2smin + 3�P�m�s���smin − 5� ,

asmin−3� �s� = − �s − 2smin + 5�P�m�s���smin − 6� ,

a3��s� = a2�s��s − smin − 2��s − smin − 1�

− �s − 7�P�m�s��
smin,6 + 
smin,5� ,

a2��s� = �a1��s� + a1�s� − a2�s���s − smin − 1��s − smin�

− �s − 5�P�m�s��
smin,5 + 
smin,4� ,

a1��s� = �− a1��s� + a0��s� − a1�s� + a0�s���s − smin��s − smin + 1�

− �s − 3�P�m�s��
smin,4 + 
smin,3� ,

a0��s� = �− a0��s� − a0�s���s − smin + 1��s − smin + 2�

− �s − 1�P�m�s�
smin,3. �23�

IV. ASYMPTOTIC INTEGRABILITY

The population equation for P�s�, under the not too re-
strictive conditions mentioned in Sec. III, is a linear differ-
ence equation

au�s + u�P�s + u� + au−1�s + u − 1�P�s + u − 1� + ¯

+ a0�s�P�s� = 0. �24�

Here, the ai�s� �i=0,¼ ,u� are general coefficients. They are
related to the coefficients ai�s� , ai��s� , ai��s� �i=0, 1, 2� in-
troduced in Sec. III for specific cases. The coefficients
au�s� , au−1�s�, etc., depend on s but are all polynomials of
same degree n,

au�s� = Au,nsn + Au,n−1sn−1 + ¯ + Au,0. �25�

For the kernel �t
A , n=1. For the uniform kernel, n=2. For

the nearly uniform kernel, n=3.
As emphasized before, it is through the s dependence of

Ms�k� that the local environment of the cell is represented.
By contrast, a global mean-field approximation �see �27� for
the cell disappearance case� assumes that a transforming cell
gives away its edges to any cell of the foam instead of to its
nearest neighbors. The coefficients of Eq. �24� are then con-
stant �polynomials of degree zero in s�. The general solution
is then a combination of u independent eigensolutions
Pu�s� , Pu−1�s� , ¼ , P1�s�, all decaying exponentially for
large s. But in all natural foams, P�s� has a single, universal
exponential decay, characteristic of one eigensolution only.
Which solution is the physical one is a much debated prob-
lem �27–33�, but an academic one, since it arises only in the
global mean-field approximation.

In the local mean-field approximation, the coefficients
au�s� , au−1�s�, etc., are polynomials in s. The constraints
�11�–�13� make the population equation �24� asymptotically
integrable �integrable for large s�.

The linear difference equation �24� is integrable if it can
be written as

D�bu−1�s + u − 1�P�s + u − 1� + ¯ + b1�s + 1�P�s + 1�

+ b0�s�P�s�� = 0, �26�

where the difference operator D is defined by Eq. �19�. Thus,
integrability of linear difference equation �24� is equivalent
to

au�s + u� = bu−1�s + u� ,

au−1�s + u − 1� = bu−2�s + u − 1� − bu−1�s + u − 1� ,

¯

a1�s + 1� = b0�s + 1� − b1�s + 1� ,

a0�s� = − b0�s� . �27�

It follows that

au�s� + au−1�s� + au−2�s� + ¯ + a0�s� = 0. �28�

Inversely, if the above condition holds, we can define

bu−1�s + u� = au�s + u� ,

bu−2�s + u − 1� = au−1�s + u − 1� + au�s + u − 1� ,

¯

b0�s� = a1�s� + ¯ + au�s� , �29�

to show that Eq. �24� integrates to Eq. �26�.
Now consider the case where all the coefficients of �24�

are polynomials �25� of the same degree n and
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q�s� = au�s� + au−1�s� + au−2�s� + ¯ + a0�s� �30�

is a polynomial of lower degree nq. Then population equation
�24� can be written as

D�bu−1�s + u − 1�P�s + u − 1� + ¯ + b0�s�P�s�� + q�s�P�s�

= 0. �31�

For large s, it reduces to a lower-order equation

bu−1�s + u − 1�P�s + u − 1� + ¯ + b0�s�P�s� = 0, �32�

since nq�n. The right-hand side of Eq. �32� is zero because
the solution P�s� must satisfy constraints �11� and �12�.

To find the asymptotic behavior of the u solutions of dif-
ference equation �24� with polynomial coefficients �25�, we
set P�s��Cs−�zs for large s in the equation and equate to
zero the coefficients of the highest powers in s �34�. The
leading term yields a linear algebraic equation for z

G�z� = zuAu,n + zu−1Au−1,n + ¯ + z1A1,n + A0,n = 0. �33�

The next term yields �, which is given explicitly for a single
root of �33�

� = n +
S0,n−1

S1,n
, �34�

where

Sj,n = �
p=0

u

pjzpAp,n �35�

for j=0,1,¼ A double root exists if G�z�=S0,n=0 and
dG�z� /dz=S1,n /z=0. In our models, a double root z=1 ap-
pears, but simultaneously, S0,n−1=0, or equivalently, n−nq
�2 �Secs. V and VII�. Then � satisfies

H��� = �2S2,n + ���1 − 2n�S2,n − 2S1,n−1� + n�n − 1�S2,n

+ 2�n − 1�S1,n−1 + 2S0,n−2 = 0. �36�

Asymptotic integrability nq�n implies that Au,n+Au−1,n
+¼+Ap,n+¼+A0,n=0, so that z=1 is also a root of Eq.
�33�. Thus, at least one of the u solutions of Eq. �24� decays
algebraically, in contrast with the global mean-field results
that all solutions decay exponentially. Asymptotic integrabil-
ity selects the physical solution and filters out the irrelevant
ones, as we shall see in Secs. V–VII.

For completeness, consider the case where v+1 coeffi-
cients of the linear difference equation �24�
a0�s� , a1�s� , ¼ ,av−1�s� , av�s� are polynomials of the same
degree, but av+1�s� , av+2�s� , ¼ ,au�s� are polynomials of a
lower degree. One can use the method of dominant balance
�34� to obtain the asymptotic behavior of the distribution
P�s�. At large s, the terms av+1�s� , av+2�s� , ¼ ,au�s� are neg-
ligible, and we recover a vth-order linear difference equa-
tion. The asymptotic integrability and behavior of the physi-
cal solutions of this vth-order equation, namely, the values of
z and � in Eq. �1�, can be found by the methods developed
above. The remaining u−v solutions of the linear equation
can be obtained by looking for other possible dominant bal-
ances. Of course, any oscillating �negative� or non-
normalizable solutions for P�s� must be discarded. This im-

mediately reduces the number of possible balances. For
example, any population equation with positive coefficients
need not be considered, since it has no non-negative solu-
tions for P�s�. Examples of the method will be given in Secs.
V–VII.

Polynomials q�s�=au�s�+au−1�s�+au−2�s�+¼+a0�s� for
the various population equations of Sec. III are given in Ap-
pendix A. One sees readily that nq�n.

Solutions behaving as P�s��Cs−�zs for large s are physi-
cal �i.e., normalizable and non-negative� if only 0�z�1. To
satisfy constraints �11� and �12�, we must have ��2 if z
=1. Moreover, the finiteness of

�2 = �
s=3

P�s��s − 6�2, �37�

a measure of randomness �1�, implies ��3 if z=1.

V. EXAMPLE: THE CASE OF CELL DIVISION ONLY

The steady state of a cellular structure evolving by cell
division depends on two sets of parameters, ��s �k ,m� and
P�m �k�. We consider uniform and nearly uniform kernels.
With cell division as the only elementary topological trans-
formation, smin�5 for the distribution P�s� to obey con-
straint �12�. With smin=3 and smin=4, this concerns 2D foams
generated by fragmentation �21�. Note that P�d �k�=0 here,
and the fate of cells is unambiguous �see Sec. III�.

Two algorithms of cell selection have been considered
�21�. The first algorithm S1 selects a cell at random among all
cells. The second algorithm S2 first selects an edge at random
among all edges, then chooses between the two cells sepa-
rated by that edge. The k-sided selected cell is then frag-
mented into two cells by an additional edge bridging two
different sides chosen at random among its k sides. As dis-
cussed in Sec. III, P�m �k� must be consistent with ��s �k ,m�.
For algorithm S1, the conditional probability is P�m �k�=1,
and for algorithm S2 , P�m �k�=k /6. Moreover, P�m �k�=0 if
k�2smin−4 or k�2smin−2 for kernels �smin

B and �smin

C , re-
spectively.

The population equations corresponding to various ker-
nels and cell selections �topological transformations TT� are
given in Eqs. �18�, �20�, and �22�, and summarized in Table I.
Since A�s ,k� is linear in s and k, a1��s� and a0��s� are polyno-
mials in s of degree n=1 in the local mean-field approxima-
tion �maximum entropy�

a1��s� = A1,1� s + A1,0� ,

a0��s� = A0,1� s + A0,0� . �38�

The particular values of the coefficients A1,1� , A1,0� , etc., de-
pend on the choice of the division kernel and of the algo-
rithm of cell selection. These values and the corresponding
structural parameters 0��−1�1/6, 0��0�1 and 0��1
are given in Appendix B.

With kernel �t
A and algorithm S1, the population equation

is first order if t�4. Its solution decays asymptotically as
s−1−�2−b3−b4�/�, where
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� = 2� + �2 − 12���
s=3

P�s�
s

�39�

is a positive structural parameter. For t�5, the coefficients
of the new terms u�5 in the population equation are con-
stant, whereas the coefficients for u=3,4 are linear in s and
dominate the asymptotic behavior of the distribution P�s�.
That there are no other physical �real, non-negative, and nor-
malizable with �s=6� solutions can be deduced from the
following argument: Note first that only one of the coeffi-
cients of the population equation �a1��s+1�+b4� is negative at
large s; the others are positive. Balancing two terms with
positive coefficients would yield an unacceptable negative
solution. Thus, the dominant balance method is reduced to
btP�s+ t−3�=�sP�s+1�, with a non-normalizable solution
that grows like �s ! �1/�t−4��� /bt�s/�t−4�.

With kernel �smin

B and algorithm S1, the population equa-
tion is second order since smin�5. It is asymptotically inte-

grable, since nq=0�n=2. The population equation has solu-
tions of the type P�s��Cs−�zs for large s. Equation �33� is
then A1,1� �z−1�2=0, with a double root z=1. The correspond-
ing � is a solution of Eq. �36�, namely,

H1��� = �2�− A1,1� � + ��A1,1� − �0 − 1� + 2 = 0, �40�

where H1�0�=2, H1�1�=1−�0�0, and H1�2�=−2��0+A1,1� �
�−�4/3��0 �see Appendix B�. Thus, Eq. �40� has one root
between 1 and 2, which is unphysical. The other root, �1, is
positive and physical if A1,1� �0.

With kernel �smin

C and algorithm S1, the population equa-
tion is second �third� order, if smin�5 �smin=5�. The popula-
tion equation is asymptotically integrable since nq=1�n
=3. Using Eq. �33� to find the asymptotic behavior, we re-
cover the same equations for z as for the uniform kernel.
Again, z=1 is a double root, and � satisfies the equation

TABLE I. Population equations for foams evolving by cell division. a1��s�=A1,1� s+A1,0� and a0��s�=A0,1� s
+A0,0� . Coefficients A1,1� , A1,0� , etc., are given explicitly in Appendix B.

TT Population equation for P�s�

�t
A , S1

�
u=6

u=t

buP�s − 3 + u� + b5P�s + 2� + �a1��s + 1� + b4�P�s

+ 1� + �a0��s� + b3�P�s� = 0

�smin

B , S1 Eq. �20� with a2��s�=a1��s��s−smin�−2
smin,5

a1��s�= �−a1��s�+a0��s���s−smin+1�−2
smin,4

a0��s�=−a0��s��s−smin+2�−2
smin,3

�smin

C , S1 Eq. �22� with a3��s�=−�s−7�
smin,5

a2��s�=a1��s��s−smin−1��s−smin�− �s−5��
smin,5

+
smin,4�
a1��s�= �−a1��s�+a0��s���s−smin��s−smin+1�− �s−3�

��
smin,4+
smin,3�
a0��s�=−a0��s��s−smin+1��s−smin+2�− �s−1�
smin,3

�t
A , S2

�
u=6

u=t

bu�s − 3 + u�P�s − 3 + u� + b5�s + 2�P�s + 2�

+ �s�b4 − 3� + �b4 − 9��P�s + 1�

+ �b3 + 2�sP�s� = 0

�smin

B , S2 Eq. �20� with a2��s�=6a1��s��s−smin�−2s
smin,5

a1��s�=6�−a1��s�+a0��s���s−smin+1�−2s
smin,4

a0��s�=−6a0��s��s−smin+2�−2s
smin,3

�smin

C , S2 Eq. �22� with a3��s�=−s�s−7�
smin,5

a2��s�=6a1��s��s−smin−1��s−smin�−s�s−5��
smin,5

+
smin,4�
a1��s�= �−6a1��s�+6a0��s���s−smin��s−smin+1�−s�s

−3��
smin,4+
smin,3�
a0��s�=−6a0��s��s−smin+1��s−smin+2�−s�s

−1�
smin,3
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H2��� = �2�− A1,1� � + ��A1,1� − �0 − 1� + 
smin,5 + 2
smin,4

+ 2
smin,3 = 0, �41�

with new values for A1,1� and �0 �see Appendix B�. The same
conclusions can be drawn �mutatis mutandis�: There is only
one distribution decaying algebraically with �2, the physical
root of Eq. �41�.

With kernel �t
A and algorithm S2, the population equation

is first order if t�4. Its solution decays asymptotically as
s−1+6/�b4−3�. For t�4, the population equation �multiplied by
six� is asymptotically integrable since q�s�=−6 and n=1
�nq=0. Solutions of the population equation decay as
P�s��Cs−�zs. Equation �33� is

G1�z� = zt−3bt + zt−4bt−1 + ¯ + z2b5 + z�b4 − 3� + b3 + 2 = 0.

�42�

The sum rule �bu=1 guarantees that z3=1 is an acceptable
root of the above algebraic equation �42�. Then �3, corre-
sponding to the root z3=1, can be found from Eq. �34�

�3 =
− 6

b4 − 3 + �2b5 + 3b6 + ¯ + �t − 3�bt�
+ 1. �43�

The algebraic equation �42� can be analyzed further with
Descartes’ theorem, which states that the number of positive
real roots of a real algebraic equation is either equal to N0,
the number of sign changes in the sequence of coefficients,
or is less than N0 by a positive even integer �35�. Equation
�42� has bt�0, bt−1�0,¼ , b5�0, b4−3�0, b3+2�0,
that is N0=2 and at most two positive roots. One is z=1. To
investigate the magnitude of the second positive root �the
only positive root of polynomial G1�z� / �z−1��, we use Jury’s
theorem on a polynomial equation given by Eq. �33� with
Au,n�0. The theorem states that �−1�uG�−1��0 is a neces-
sary condition for the equation to have no root outside the
unit circle �z�=1 �see, e.g, �35,36� for the necessary and suf-
ficient conditions�. Since �−1�t−4G1�z� / �z−1��z=−1=−�bt−1

+bt−3+ ¯ +b3+2��0, the second positive root of G1�z� is
greater than one and unphysical.

With kernel �smin

B and algorithm S2, the population equa-
tion is second order since smin�6. It is asymptotically inte-
grable because Eq. �A3� implies q�s�=�1+6�0−s and n=2
�nq=1. Here the first solution decays exponentially with

z4 = −
A0,1�

A1,1�
,

�4 = 2 +
S0,1

S1,2
, �44�

where

S0,1 = �A0,1� �6smin − 12� − 6A0,0� − 2
smin,3� + z4��6A0,1� − 6A1,1� �

��1 − smin� + �6A0,0� − 6A1,0� � − 2
smin,4�

+ z4
2�− 6sminA1,1� + 6A1,0� − 2
smin,5� ,

S1,2 = z4�6A0,1� − 6A1,1� � + z4
2�12A1,1� � . �45�

The second solution decays asymptotically with z=1 and �
=3.

With kernel �smin

C and algorithm S2, the population equa-
tion is asymptotically integrable if smin�5, since n=3�nq
=1. Here the first solution decays asymptotically with

z5 = −
A0,1�

A1,1�
,

�5 = 3 +
S0,2

S1,3
, �46�

where

S0,2 = �A0,1� �12smin − 18� − 6A0,0� − 
smin,3� + z5��6A0,1� − 6A1,1� �

��1 − 2smin� + �6A0,0� − 6A1,0� � − 
smin,4 − 
smin,3�

+ z5
2�A1,1� �− 12smin − 6� + 6A1,0� − 
smin,5 − 
smin,4� ,

S1,3 = z5�6A0,1� − 6A1,1� � + z5
2�12A1,1� � . �47�

Note that z4 and z5 are not equal, since the values of A0,1� and
A1,1� for uniform and nearly uniform kernels are not the same.
But the second solution of the population equation decays
again asymptotically with z=1 and �=3. Our results are
summarized in Table II.

VI. EXAMPLE: THE CASE OF CELL DISAPPEARANCE
ONLY

In the case of cell disappearance, it has been assumed that
only three-, four-, and five-sided cells disappear. Thus,
P�d �k�=1 for k�5 and P�d �k�=0 for k�6. The sum rules
��5�, �6a�, and �6b�� yield 	�−1 �3,d�=1, 	�−1 �4,d�=1/2,
	�0 �4,d�=1/2, 	�−1 �5,d�=2/5, 	�0 �5,d�=2/5, and
	�1 �5,d�=1/5. Thus for s�5, Eq. �17� reads

a2�s + 2�P�s + 2� + a1�s + 1�P�s + 1� + a0�s�P�s� = 0, �48�

where

a2�s� = �3A�s,3� +
�4

2
A�s,4� +

2�5

5
A�s,5� ,

a1�s� = − �3A�s,3� −
�4

2
A�s,4� −

3�5

5
A�s,5� + �3 + �4 + �5,

a0�s� =
�5

5
A�s,5� , �49�

and

�k = P�k�P�d�k� . �50�

�We used the simpler notation a�s�=a2�s�, b�s�=a1�s�, and
c�s�=a0�s� for u=2 in our previous paper �23��. Since A�s ,k�
is linear in s and k in the local mean-field approximation
�maximum entropy�, the coefficients of the linear difference
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equation �48� are polynomials in s of degree n=1

a2�s� = A2,1s + A2,0,

a1�s� = A1,1s + A1,0,

a0�s� = A0,1s + A0,0. �51�

The values of coefficients A2,1 , A2,0, etc., are listed in Ap-
pendix B.

Equation �48� is asymptotically integrable because q�s�
=�3+�4+�5 and nq=0�n=1. For cellular structures evolv-
ing by disappearance, the parameters z̃ and �̃, characterizing
the asymptotic behavior of P�s��Cs−�̃z̃s, have a tilde. The
first solution of Eq. �48� decays exponentially with

z̃1 =
A0,1

A2,1
� 1,

�̃1 = 1 +

A0,1A2,0

A2,1
+ A1,0 +

A2,1A0,0

A0,1

A0,1 − A2,1
, �52�

and the second solution decays, algebraically, with

z̃2 = 1,

�̃2 = 1 −
A0,0 + A1,0 + A2,0

A0,1 − A2,1
. �53�

Our results are summarized in Table III.

VII. EXAMPLE: THE CASE OF CELL DIVISION AND
DISAPPEARANCE

The steady state of a cellular structure evolving by divi-
sion and disappearance depends on three parameters,

TABLE II. Asymptotic integrability of the population equations and the distribution P�s��Cs−�zs for various foams evolving by cell
division. u: order of the difference equation, n: the largest degree of the coefficients, nq: degree of q�s�. The values for z and � are given in
the text.

TT u q�s� n nq Integrability z �

�t
A , S1 t�4 1 1 - First order 1 1 +

2 − b3 − b4

�

�t
A , S1 t�5 t−3 1 - Asymp. integr. 1 1 +

2 − b3 − b4

�

�smin

B , S1 smin�6 2 �0−1 2 0 Asymp. integr. z1=1 �1

�smin

C , S1 smin�5 2 −2a0��s�+2�0�s−smin�
+ �−2smin+8
smin,4+4
smin,3�s

3 1 Asymp. integr. z2=1 �2

�smin

C , S1 smin=5 3 3 - Asymp. integr. z2=1 �2

�t
A , S2 t�4 1 1 - First order 1 1 −

6

b4 − 3

�t
A , S2 t�5 t−3 −6 1 0 Asymp. integr. z3=1 �3

�smin

B , S2 smin�6 2 �1+6�0−s 2 1 Asymp. integr. z4 �4

1 3

�smin

C , S2 smin�5 2 �−2smin+8
smin,4+4
smin,3�s
−12a0��s�+ �s−smin��12�0+2�1�

3 1 Asymp. integr. z5 �5

1 3

�smin

C , S2 smin=5 3 3 - Asymp. integr. z5 �5

1 3

TABLE III. Asymptotic integrability of the population equations and the distribution P�s��Cs−�̃z̃s for
foams evolving by cell disappearance. u: order of the difference equation, n: the largest degree of the
coefficients, nq: degree of q�s�. The values for z̃ and �̃ are given in the text.

TT u q�s� n nq Integrability z̃ �̃

	�i �k,d� P�d �k�=1 for k�5 2 �3+�4+�5 1 0 Asymp. integr. z̃1 �̃1

P�d �k�=0 for k�6 z̃2=1 �̃2
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P�m �k�, ��s �k ,m�, and P�d �k�. It is assumed that P�d �k�
=0 for s�6, in agreement with von Neumann’s law and with
simulations on the renewal of the epidermis �17�. As before,
we consider two algorithms S1 and S2 for selection of divid-
ing cells. But here, we take kernel �t

A with b3=b4=b5=0,
kernels �smin

B and �smin

C with smin�5, and the corresponding
P�m �k�, to avoid ambiguity in the fate of three-, four-, and

five-sided cells �see Sec. III�. The population equations cor-
responding to various division kernels and selection algo-
rithms �topological transformations �TT�� can be found from
the general equations �18�, �20�, and �22�, and are summa-
rized in Table IV. Asymptotic integrability of these popula-
tion equations can be checked using the criterion discussed
in Sec. IV. For cellular structures evolving by division and

TABLE IV. Population equations for foams evolving by cell division and disappearance. a1��s�=A1,1� s
+A1,0� , a0��s�=A0,1� s+A0,0� , a2�s�=A2,1s+A2,0, a1�s�=A1,1s+A1,0, and a0�s�=A0,1s+A0,0. Coefficients
A1,1� , A1,0� , etc., are given explicitly in Appendix B.

TT Population equation for P�s�

�A , S1

�
u=6

u=t

buP�s − 3 + u� + a2�s + 2�P�s + 2� + �a1�s + 1�

+ a1��s + 1��P�s + 1� + �a0�s� + a0��s��P�s� = 0

�B , S1 Eq. �20� with asmin−3� �s�=−2��smin−6�
a3��s�=a2�s��s−smin−1�−2
smin,6

a2��s�= �a1��s�+a1�s�−a2�s���s−smin�−2
smin,5

a1��s�= �−a1��s�+a0��s�−a1�s�+a0�s���s−smin+1�
a0��s�= �−a0��s�−a0�s���s−smin+2�

�C , S1 Eq. �22� with asmin−2� �s�=−�s−2smin+3���smin−5�
asmin−3� �s�=−�s−2smin+5���smin−6�

a3��s�=a2�s��s−smin−2��s−smin−1�− �s−7��
smin,6

+
smin,5�
a2��s�= �a1��s�+a1�s�−a2�s���s−smin−1��s−smin�− �s

−5�
smin,5

a1��s�= �−a1��s�+a0��s�−a1�s�+a0�s���s−smin��s−smin

+1�
a0��s�= �−a0��s�−a0�s���s−smin+1��s−smin+2�

�A , S2

�
u=6

u=t

bu�s − 3 + u�P�s − 3 + u� + 6a2�s + 2�P�s + 2�

+ �6a1�s + 1� + 6a1��s + 1��P�s + 1� + �6a0�s�

+ 6a0��s��P�s� = 0

�B , S2 Eq. �20� with asmin−3� �s�=−2s��smin−6�
a3��s�=6a2�s��s−smin−1�−2s
smin,6

a2��s�=6�a1��s�+a1�s�−a2�s���s−smin�−2s
smin,5

a1��s�=6�−a1��s�+a0��s�−a1�s�+a0�s���s−smin+1�
a0��s�=6�−a0��s�−a0�s���s−smin+2�

�C , S2 Eq. �22� with asmin−2� �s�=−s�s−2smin+3���smin−5�
asmin−3� �s�=−s�s−2smin+5���smin−6�

a3��s�=6a2�s��s−smin−2��s−smin−1�−s�s−7�
��
smin,6+
smin,5�

a2��s�=6�a1��s�+a1�s�−a2�s���s−smin−1��s−smin�
−s�s−5�
smin,5

a1��s�=6�−a1��s�+a0��s�−a1�s�+a0�s���s−smin��s
−smin+1�

a0��s�=6�−a0��s�−a0�s���s−smin+1��s−smin+2�
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disappearance, the parameters z̄ and �̄ characterizing the
asymptotic behavior of P�s� have a bar.

First, we consider kernel �t
A and algorithm S1 for selection

of dividing cells, with the constraints b3=b4=b5=0, and
P�m �3�= P�m �4�= P�m �5�=0. Three of the coefficients of
the population equation are polynomials of degree one, but
the remainder are polynomials of degree zero �constant�. The
method of dominant balance is thus useful here. Neglecting
constant polynomials at large s, we obtain a second-order
linear difference equation, which is asymptotically inte-
grable. This second-order difference equation has two solu-
tions decaying with

z̄1 =
A0,1 + A0,1�

A2,1
,

�̄1 = 1 +
�A0,0 + A0,0� � + z̄1�A1,0 + A1,0� � + z̄1

2A2,0

z̄1�A1,1 + A1,1� � + 2z̄1
2A2,1

, �54�

and

z̄2 = 1,

�̄2 = 1 +
�3 + �4 + �5 − �0 − 1

A2,1 − A0,1 − A0,1�
. �55�

The first solution �54� must be discarded if z̄1 is negative or
�1, corresponding to an oscillatory or non-normalizable dis-
tribution P�s�. Use of the dominant balance method to find
the other real positive solutions leads to the equation btP�s
−3+ t�+ �a1�s+1�+a1��s+1��P�s+1�=0, with an unaccept-
able solution growing like �s ! �1/�t−4��−A1,1� /bt−A1,1 /bt�s/�t−4�.

With kernel �smin

B and algorithm S1, the population equa-
tion is a third-order linear difference equation if 5�smin
�7. This linear difference equation is asymptotically inte-
grable since nq=0�n=2. Solutions of this population equa-
tion decay as P�s��Cs−�̄z̄s, where z̄ is a root of Eq. �33�,
which is here A2,1�z̄− z̄3��z̄−1�2=0, with

z̄3 =
A0,1 + A0,1�

A2,1
. �56�

This root coresponds to a physical solution only if it is posi-
tive and �1. z̄3 is a single root, thus by Eq. �34�, we have

�̄3 = 2 +
E0�s0 − smin + 2� + z̄3E1�s1 − smin + 1� + z̄3

2E2�s2 − smin� + z̄3
3�− E0 − E1 − E2��s3 − smin − 1�

z̄3E1 + 2z̄3
2E2 + 3z̄3

3�− E0 − E1 − E2�
. �57�

The values of parameters E0, E1, E2, s0, s1, s2, and s3 are
listed in Appendix B. z̄=1 is a double root; thus according to
Eq. �36�, the corresponding �̄’s satisfy

H3��̄� = �̄2�A0,1� + A0,1 − A2,1� + �̄�− �0 − 1 + �3 + �4 + �5

− A0,1� − A0,1 + A2,1� + 2
smin,5 + 2
smin,6 = 0. �58�

Note that if 0� z̄3�1 or A0,1+A0,1� �A2,1, the product of the
roots of the algebraic equation �58�, 2 / �A0,1� +A0,1−A2,1�, is
negative. Thus only �̄4, the positive solution of Eq. �58�,
must be considered. If z̄3�1, both �̄4 and �̄5 could be posi-
tive. We expect one of the roots to be unacceptable �i.e.,
corresponding distribution P�s�, contradicting constraints
given by Eq. �12��, although we have not been able to show
this explicitly. For smin�7, one of the coefficients of the

population equation is a polynomial of degree zero. The
dominant balance method leads to the previous population
equation, but here we must exclude the non-normalizable
solution with z̄=1, �̄=0, which Eq. �58� allows.

With kernel �smin

C and algorithm S1, the population equa-
tion is a third-order linear difference equation if smin=5. This
linear difference equation is asymptotically integrable since
nq=1�n=3. Solutions of this population equation decay as
P�s��Cs−�̄z̄s, where Eq. �33� implies A2,1�z̄− z̄6��z̄−1�2=0,
with

z̄6 =
A0,1 + A0,1�

A2,1
. �59�

This root is physically unacceptable if it becomes negative or
�1. z̄6 is a single root; thus by Eq. �34�, we have

�̄6 = 3 +
E0�s0 − 2smin + 3� + z̄6E1�s1 − 2smin + 1� + z̄6

2E2�s2 − 2smin − 1� + z̄6
3�− E0 − E1 − E2��s3 − 2smin − 3�

z̄6E1 + 2z̄6
2E2 + 3z̄6

3�− E0 − E1 − E2�
. �60�

z̄=1 is a double root; thus according to Eq. �36�, the corre-
sponding �̄’s satisfy
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H4��̄� = �̄2�A0,1� + A0,1 − A2,1� + �̄�− �0 − 1 + �3 + �4 + �5

− A0,1� − A0,1 + A2,1� + 2
smin,5 + 
smin,6 = 0. �61�

Note that if 0� z̄6�1 or A0,1+A0,1� �A2,1, the product of
roots of the algebraic equation �61�, 2 / �A0,1� +A0,1−A2,1�, is
negative. Thus only �̄7, the positive solution of Eq. �61� must
be considered. If z̄6�1, both �̄7 and �̄8 could be positive. As
with the previous case, we expect one of the roots to be
unacceptable, although we have not been able to show this
explicitly. For smin�6, one or two of the coefficients of the
population equation are a zero-degree polynomial. The domi-
nant balance method leads to the previous population equa-
tion, but here we must exclude the non-normalizable solution
with z̄=1, �̄=0, which is allowed from Eq. �61�.

Now we consider kernel �t
A and algorithm S2 for selection

of dividing cells, with the constraints b3=b4=b5=0, and
P�m �3�= P�m �4�= P�m �5�=0. The population equation is as-
ymptotically integrable since n=1�nq=0. Solutions of the
population equation decay as P�s��Cs−�̄z̄s. Equation �33�
implies G2�z̄�=0, where

G2�z̄� = z̄t−3bt + z̄t−4bt−1 + ¯ · + z̄3b6 + z̄2�6A2,1�

+ z̄�6A1,1 + 6A1,1� � + 6A0,1 + 6A0,1� . �62�

The sum rule �bu=1 guarantees that z̄9=1 is an acceptable
root of the algebraic equation �62�. Then �̄9, corresponding
to acceptable root z̄9=1, can be found from Eq. �34�

�̄9 = 1 +
6��3 + �4 + �5 − �0� − �1

6A1,1 + 6A1,1� + 12A2,1 + �3b6 + ¯ + �t − 3�bt�
.

�63�

The algebraic equation �62� can be analyzed further with
Descartes’ theorem. bt�0, bt−1�0,¼, b6�0, 6A2,1�0,
6A1,1+6A1,1� �0, and 6A0,1+6A0,1� �0, so the number of sign
changes is two. Hence, Eq. �63� has two positive roots, z̄9
=1 and z̄10. z̄10 is the only positive root of G2�z̄� / �z̄−1�=0 or
z̄G3�z̄�+6A2,1z̄− �6A0,1+6A0,1� �=0, where

G3�z̄� = bt�z̄t−5 + z̄t−6 + ¯ + 1� + ¯ + b6�z̄ + 1� . �64�

z̄10 thus satisfies z̄10= �6A0,1+6A0,1� � / �6A2,1+G3�z̄10��
� �6A0,1+6A0,1� � / �6A2,1��1. Then �̄10, corresponding to the
acceptable root 0� z̄10�1, can be found from

�̄10 = 1 +
6A0,0 + 6A0,0� + z̄10�6A1,0 + 6A1,0� � + z̄10

2 �6A2,0�
z̄10�6A1,1 + 6A1,1� � + 2z̄10

2 �6A2,1� + �3z̄10
3 b6 + 4z̄10

4 b7 + ¯ + �t − 3�z̄10
t−3bt�

. �65�

With kernel �smin

B and algorithm S2, the population equa-
tion is a third order linear difference equation if 5�smin
�6. This linear difference equation is asymptotically inte-
grable since nq=1�n=2. Solutions of this population equa-
tion decay as P�s��Cs−�̄z̄s. Equation �33� yields �z̄
−1�G4�z̄�=0, where

G4�z̄� = z̄2�− E0 − E1 − E2� + z̄�− E0 − E1� − E0. �66�

�̄11 corresponding to the single root z̄11=1 is

�̄11 = 1 + 2
smin,5 + 2
smin,6. �67�

The second-degree polynomial G4�z̄� has at least one root
between zero and one, since G4�0�G4�1��0. However, its
second root does not lie between zero and one, since G4�1�
�0. We denote the acceptable root of Eq. �66� by z̄12. �̄12
corresponding to the single root 0� z̄12�1 is then

�̄12 = 2 +
S0,1

S1,2
, �68�

where

S0,1 = E0�6s0 − 6smin + 12� + z̄12E1�6s1 − 6smin + 6�

+ z̄12
2 �6E2�s2 − smin� − 2
smin,5� + z̄12

3 �− 6�E0 + E1 + E2�

��s3 − smin − 1� − 2
smin,6� ,

S1,2 = 6z̄12E1 + 12z̄12
2 E2 + 18z̄12

3 �− E0 − E1 − E2� . �69�

For smin�6, one of the coefficients of the population equa-
tion is a first-degree polynomial. The dominant balance
method then leads to the previous asymptotic behavior. Note
that for smin�6, we must eliminate the solution decaying
with z̄=1 and �̄=1, which Eq. �67� allows.

With kernel �smin

C and algorithm S2, the population equa-
tion is a third-order linear difference equation if smin=5. This
linear difference equation is asymptotically integrable since
nq=1�n=3. Solutions of this population equation decay as
P�s��Cs−�̄z̄s. Equation �33� implies �z̄−1�G4�z̄�=0. �̄13,
corresponding to the single root z̄13=1, is

�̄13 = 1 + 2
smin,5 + 
smin,6. �70�

The second-degree polynomial G4�z̄� has at least one root
between zero and one, since G4�0�G4�1��0. However, its
second root is not between zero and one, since G4�1��0. We
denote the acceptable root of Eq. �66� by z̄14. �̄14, corre-
sponding to the single root 0� z̄14�1, is then

�̄14 = 3 +
S0,2

S1,3
, �71�

where
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S0,2 = E0�6s0 − 12smin + 18� + z̄14E1�6s1 − 12smin + 6�

+ z̄14
2 �6E2�s2 − 1 − 2smin� − 
smin,5�

+ z̄14
3 �− 6�E0 + E1 + E2��s3 − 2smin − 3� − 
smin,6

− 
smin,5� ,

S1,3 = 6z̄14E1 + 12z̄14
2 E2 + 18z̄14

3 �− E0 − E1 − E2� . �72�

For smin�6, two of the coefficients of the population equa-
tion are polynomials of degree two. The dominant balance
method then leads to the previous asymptotic behavior. Note
that for smin�6, we must eliminate the solution decaying
with z̄=1 and �̄=1, which Eq. �70� allows.

Our results are summarized in Table V.

VIII. DISCUSSION

For a cellular structure evolving by cell fragmentation un-
der the uniform kernel �smin

B with smin=3 and cell selection
algorithm S1 , q�s�=�0−1=0; thus, the population equation
integrates to a first-order equation a2��s�P�s+1�−a0��s�P�s�
=0 or

P�s�
P�s − 1�

=
�s2 + s�2 − 9�� + 14� − 2

�s − 3���s − 6� + 4�
.

Asymptotic behavior of P�s� is then characterized by z1=1
and �1=2/�, as Eq. �40� implies. Our results are in complete

agreement with Ref. �21�. This model has been investigated
further with numerical simulations, and a power-law varia-
tion P�s��s−5.72 for large s is found �21�. Simulations esti-
mate �=0.356; thus, the theoretical value �1=2/�=5.61 and
the numerical value �1=5.72 agree.

Delannay and Le Caër discussed such a power-law varia-
tion of P�s� for large s �21�, but this is not a rare situation.
We have presented many other examples in Tables II and V,
where the population equation has one physically acceptable
solution, whose tail decays algebraically.

More frequently, numerical simulations indicate an expo-
nential variation of P�s� for large s. Tables II, III, and V
often show that population equations have two physically
acceptable solutions, one exponentially decaying solution
P1�s� and one algebraically decaying solution P2�s� implied
by the asymptotic integrability �Sec. IV�. The general solu-
tion is then P�s�=F1P1�s�+F2P2�s�, where F1 and F2 are
constants, but F2 is negligible. These foams are described by
the exponentially decaying solution P1�s�. This is because
the physical process of statistical equilibrium under ETT,
constrained by �s=6, has nearly exhausted all the nonvan-
ishing P1�s� by sas�6+��2. Note �2=�P�s��s−6�2 is a
measure of width of distribution around the mean value 6.
The algebraic solution P2�s� is a negligible smooth back-
ground. We can estimate F2, noting that the constraint
�P�s�=1 implies �F2P2�s��1. So F2�s=3

� s−��1 or
F2���k�−1−2−���1 where � is Riemann’s � function.

TABLE V. Asymptotic integrability of the population equations and the distribution P�s��Cs−�̄z̄s for various foams evolving by cell
division and disappearance. u: order of the difference equation, n: the largest degree of the coefficients, nq: degree of q�s�. The values for z̄
and �̄ are given in the text.

TT u q�s� n nq Integrability z̄ �̄

�t
A , S1 b3=b4=0, b5=0 t−3 1 - Asymp. integr. z̄1 �̄1

z̄2=1 �̄2

�smin

B , S1 5�smin�7 3 �0−1−�3−�4−�5 2 0 Asymp. integr. z̄3 �̄3

z̄4=1 �̄4

z̄5=1 �̄5

�smin

B , S1 smin�7 smin−3 2 - Asymp. integr. z̄3 �̄3

z̄4=1 �̄4

�smin

C , S1 smin=5 3 2+2��0−�3−�4−�5��s−5�+2a2�s�−2a0�s�−2a0��s� 3 1 Asymp. integr. z̄6 �̄6

z̄7=1 �̄7

z̄8=1 �̄8

�smin

C , S1 smin�5 smin−2 3 - Asymp. integr. z̄6 �̄6

z̄7=1 �̄7

�t
A , S2 b3=b4=0, b5=0 t−3 −�1−6�0+6��3+�4+�5� 1 0 Asymp. integr. z̄9=1 �̄9

z̄10 �̄10

�smin

B , S2 5�smin�6 3 �1+6�0−6��3+�4+�5�−s 2 1 Asymp. integr. z̄11=1 �̄11

z̄12 �̄12

�smin

B , S2 smin�7 smin−3 2 - Asymp. integr. z̄12 �̄12

�smin

C , S2 smin=5 3 �2s−10���1+6�0−6�3−6�4−6�5�+2s+12a2�s�−12a0�s�
−12a0��s�

3 1 Asymp. integr. z̄13=1 �̄13

z̄14 �̄14

�smin

C , S2 smin�6 smin−2 3 - Asymp. integr. z̄14 �̄14
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As an example, consider a cellular structure evolving by
cell fragmentation under the uniform kernel �smin

B with smin

=3 and cell selection algorithm S2. Equation �44� then im-
plies that the first solution decays exponentially as �2/3�s,
whereas the second solution decays algebraically as s−3. Nu-
merical simulations of this model show that P�s� decreases
as �2/3�s for 10�s�120 and as s−3 for s�130 �P�125�
�10−21�, and moreover, �2=8.168 �21�. Therefore, 10−21

=F2�125�−3 , F2=10−14, quite negligible. Our estimate sas
�9 and the simulation value of 10 are in good agreement.

The above arguments based on asymptotic integrability
explain the exponential tail of P�s� for foams evolving by
cell disappearance only �23�. In the global mean-field ap-
proximation of Stavans et al. �27�, the coefficients a2�s�,
a1�s�, and a0�s� of Eq. �48� are zero-degree polynomials,
adding up to a nonvanishing constant: Equation �48� is not
asymptotically integrable, and one must use ad hoc criteria
to select the exponentially decaying physical solution. Fly-
vbjerg’s �28� is also a global mean-field approximation; the
edges of the disappearing cell are redistributed to any cell of
the foam, but in proportion to the number of sides of the
latter. The coefficients of Eq. �48� are polynomials of degree
1, adding up to a constant, and the population equation is
asymptotically integrable. But Flyvbjerg did not ascribe the
universality of the distribution P�s� to the asymptotic inte-
grability of the equation, as argued here. Flyvbjerg’s global
mean-field approximation is mathematically identical to the
“topological gas” ��=1/6, no correlation between neighbors,
A�k ,s�=sk /6�, which is only a limit, inaccessible experimen-
tally or through simulations �15,21,37�.

In Sec. VII, we discussed models for cellular structures
evolving by division and disappearance. Our results in Table
V confirm the asymptotic integrability of the population
equations, and the universal nature of asymptotic decay of
P�s�. The population equation has either only one physically
acceptable solution whose tail decays algebraically or two
physically acceptable solutions, one exponentially decaying
and one algebraically decaying. The second and fourth cases
in Table V show two algebraically decaying solutions, but as
stated in Sec. VII, there are indications �but no rigorous
proof� that �̄5 and �̄8 are not physically acceptable. This
awaits confirmation by simulations.

Some features of our results deserve attention. �i� The
algebraic decay of P�s� is not specific to models with cell-
selection algorithm S1. �ii� It is possible to have population
equations that are first-order, instead of asymptotically inte-
grable to a first-order equation; for example, foams evolving
by cell division under the kernel �t

A with t�4, and cell-
selection algorithm S1 or S2. �iii� With a specific choice of
parameters, an asymptotically integrable equation can be-
come integrable; for example, foams evolving by cell divi-
sion under the kernel �smin

B and cell-selection algorithm S1,
with q�s�=�0−1=0. �iv� Our results show that the
asymptotic behavior of P�s� is slightly sensitive to a modifi-
cation in the division kernel. For example, variations of the
set �bi� in �t

A, variation of smin in �smin

B or �smin

C , and switch
from the uniform kernel to the nearly uniform kernel, modify
the values of z and �. Thus, in addition to P�6� and �3

=�s=3P�s��s−6�3 proposed in �19�, the asymptotic behavior

of P�s� is symptomatic of the dynamics of the cellular sys-
tem. �v� If �P�k�P�d �k���P�k�P�m �k�, the division process
dominates and the number of cells in the system increases.
The number of cells decreases if the disappearance process
dominates. In the basal layer of the epidermis, it is vital, not
only that a stationary distribution is maintained, but also that
the total number of cells remains within upper and lower
bounds. This requires a balance between the rates of cell
division and cell disappearance, �P�k�P�m �k�
=�P�k�P�d �k� as Eq. �9� implies. The examples of Table V
can be balanced accordingly by an appropriate choice of pa-
rameters. The number of cells fluctuates, but is kept within
bounds �19,26�.

Our asymptotic analysis of population equation as a linear
difference equation cannot be applied to one important case,
the symmetric division kernel where the mother cell divides
in half as much as possible. With a suitable choice of smin in
kernels �smin

B or �smin

C , the symmetric division kernel can be
approximated. For example with smin=5 and kernel �smin

B ,
three-, four-, and five-sided cells do not divide, six-sided
cells divide into the pair of daughters �5,5�, seven-sided cells
into the pair �5,6�, eight-sided cells into the pairs �5,7�, �6,6�,
nine-sided cells into the pairs �5,8�, �6,7�, etc. However,
�nearly� uniform kernels are not expected to produce all the
details of the distribution P�s�. Rivier et al. �16� reproduced
experimental data on the cucumber �12� with a complicated
kernel favoring symmetric division, and found that the kernel
�smin

C with smin=4 did not reproduce the observed narrow
distribution, peaked at s=6. This required solving the inte-
grodifference population equation �17� directly �17�, or nu-
merical simulations �19,26�. To gain a deeper understanding
of epithelial tissues, we aim to extend our analytic approach
to the symmetric division kernel.

IX. CONCLUSIONS

Local, topological correlations between cells determine
the stationary state of foams. In a local mean-field approxi-
mation, which accounts for nearest-neighbor correlations in
statistical equilibrium, the population equations �linear dif-
ference equations of order u�2� are asymptotically inte-
grable. The population equations have one unique solution,
which decays as P�s��Cs−�zs for large values of s. The
characteristics equation for z �33�, an algebraic equation of
degree u has only one physical root ��1�. There is always
one root �=1� associated with asymptotic integrability. The
other �u−2� roots are all unphysical.

The general solution of the linear difference equation of
order u is �i=1

u FiP
i�s�, where the Fi and Pi�s� are real coef-

ficients and eigensolutions, respectively. To have a unique,
physical, and exponentially decaying solution P1�s�, the
other �u−1� solutions are either �i� incompatible with the
physical constraints of a non-negative normalized distribu-
tion of cells, six-sided on average �and thus Fi�2=0�, or �ii�
they constitute a negligible, algebraically decaying back-
ground noise �Fi�2�1�, associated with asymptotic integra-
bility. In some cases, the population equation has only one
physically acceptable solution, whose tail decays algebra-
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ically as P1�s��s−��z=1�. The other solutions are then in-
compatible with the physical constraints.

The asymptotic integrability of the equation, which im-
poses a unique and universal solution, is absent in the global
mean-field approximation. Thus, local environment and sta-
tistical equilibrium mold the stationary distribution of cell
shapes, as had been surmised in the epidermis of mammals
�17,18�, and confirmed in simulations �20,26�.

The universal distribution P�s��Cs−�zs for large values
of s, imposed by the asymptotic integrability, is indeed the
Boltzmann distribution resulting from maximum entropy in-
ference �1,15�. The entropy is S=−�P�s�ln�P�s� /Q�s��,
where Q�s� is the a priori probability of having a s-sided
cell. One maximizes the entropy restricted by the indepen-
dent constraints ��11� and �12�� to get P�s�=Q�s�exp�−�s�.
Q�s� includes the normalization factor and � is a Lagrange
multiplier enforcing the constraint. Direct comparison shows
that z=exp�−�� and Q�s� behave as s−� for large values of s.
Foams at the “infinite temperature” ��=0� are then described
by an algebraically decaying distribution.

The foams discussed here are purely topological and com-
binatorial, without any control of the energy carried by inter-
faces. In order to impose a given average energy and control
disorder, the variance �2 of the distribution P�s� should be
added to the constraints �12�. As a consequence, P�s� would
acquire a Gaussian tail for very large s, with an additional
equation of state, Lemaître’ law, relating �2 to 1− P�6�
�38,39�.
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APPENDIX A: POLYNOMIALS q„s… FOR THE VARIOUS
POPULATION EQUATIONS OF SEC. III.

For the kernel �t
A, the population equation is given by Eq.

�18�. The polynomial q�s� �30� is the sum of the coefficients

�
u=6

u=t

buP�m�s� + �a2�s� + b5P�m�s�� + �a1�s� + a1��s�

+ b4P�m�s�� + �a0�s� + a0��s� + b3P�m�s�� = − � − P�d�s� ,

�A1�

where

� = �
k

P�k�P�m�k� − �
k

P�k�P�d�k� . �A2�

For the kernel �smin

B , the population equation is given by
Eqs. �20� and �21�. The polynomial q�s� �30� is the sum of
the coefficients

asmin−3� �s� + a3��s� + a2��s� + a1��s� + a0��s�

= � − P�m�s� + P�d�s� . �A3�

Likewise, for the kernel �smin

C , the population equation is
given by Eqs. �22� and �23�. The polynomial q�s� �30� is the
sum of the coefficients

asmin−2� �s� + asmin−3� �s� + a3��s� + a2��s� + a1��s� + a0��s�

= 2a2�s� − 2a0�s� − 2a0��s� + 2�s − smin��� + P�d�s��

+ �s�2 − 
smin,6 − 2
smin,5 − 2
smin,4 − 2
smin,3�

− �s − 2smin + 3���smin − 5� + 8
smin,4 + 4
smin,3

− �s − 2smin + 5���smin − 6� − 2smin + 7
smin,6

+ 12
smin,5�P�m�s� . �A4�

APPENDIX B: COEFFICIENTS OF THE POLYNOMIALS
a1�„s…, a0�„s…, a2„s…, a1„s… AND a0„s…

For the division algorithm S1 and the uniform kernel �smin

B ,
the coefficients introduced in Eq. �38� are

A1,1� = − 1
3 ��0 − �1 − 6����0 − 6�−1�� ,

A1,0� = − 2�1 − 6����0 − 6�−1� − �0 − ��s − 2smin + 5� ,

A0,1� = 1
3 ��0 − �1 − 6����0 − 6�−1�� ,

A0,0� = 2�1 − 6����0 − 6�−1� , �B1�

where

�−1 = �
2smin−4

P�k�
k

�
1

6
,

�0 = �
2smin−4

P�k� � 1,

�1 = �
2smin−4

P�k��k − 6� � 0 �B2�

are non-negative structural parameters. Moreover, �0−6�−1
�0, and 6�0+�1�6. Equalities hold for smin�4. Recall that
�1−6���0. It follows that A1,1� �−�1/3��0.

For algorithm S2 and the uniform kernel �smin

B , the coeffi-
cients are

A1,1� = − 1
18��6�0 + �1� − �1 − 6���1� − 1

6��s − 2smin + 5� ,

A1,0� = − 1
3 �1 − 6���1 − 1

6 �6�0 + �1� ,

A0,1� = 1
18��6�0 + �1� − �1 − 6���1� ,

A0,0� = 1
3 �1 − 6���1. �B3�

Asymptotically in s, the step function in �B1� and �B3� is
equal to 1. Thus, A1,1� �−1/2.
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It is useful to express all the coefficients in terms of
6A0,1� = �1/3���6�0+�1�− �1−6���1�. Thus,

− 6A1,1� = 6A0,1� + 1,

A1,0� = 6A0,1� − 1
2 �6�0 + �1� ,

A0,0� = 6A0,1� − 1
3 �6�0 + �1� . �B4�

For smin�4, �0=1, �1=0, −6A1,1� =3, A1,0� =−1, 6A0,1� =2, and
A0,0� =0.

For the nearly uniform kernel �smin

C , all the relations above
are valid if one modifies the lower limit of the summations in
Eq. �B2� to 2smin−2, and the argument of the step function in
Eqs. �B1� and �B3� to s−2smin+3. The inequalities in �B2�
are strict.

For cell disappearance, the population equation is given in
Eq. �48�, with the coefficients in Eq. �51�. They are

A2,1 = �3�1 − 3�� +
�4

2
�1 − 2�� +

2�5

5
�1 − �� ,

A2,0 = − �1 − 6���3�3 + �4 +
2�5

5
� ,

A1,1 = − 
�3�1 − 3�� +
�4

2
�1 − 2�� +

3�5

5
�1 − ��� ,

A1,0 = �1 − 6���3�3 + �4 +
3�5

5
� + �3 + �4 + �5,

A0,1 =
�5

5
�1 − �� ,

A0,0 = − �1 − 6��
�5

5
. �B5�

The polynomials appearing in Tables I and IV can be
grouped in a simpler notation

− a0��s� − a0�s� = E0�s + s0� ,

− a1��s� + a0��s� − a1�s� + a0�s� = E1�s + s1� ,

a1��s� + a1�s� − a2�s� = E2�s + s2� ,

a2�s� = �− E0 − E1 − E2��s + s3� , �B6�

where

E0 = − A0,1� − A0,1,

s0 =
− A0,0� − A0,0

− A0,1� − A0,1
,

E1 = − A1,1� + A0,1� − A1,1 + A0,1,

s1 =
− A1,0� + A0,0� − A1,0 + A0,0

− A1,1� + A0,1� − A1,1 + A0,1
,

E2 = A1,1� + A1,1 − A2,1,

s2 =
A1,0� + A1,0 − A2,0

A1,1� + A1,1 − A2,1
,

s3 =
A2,0

A2,1
. �B7�
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